En esta página encontrarás un desglose rápido y útil de de los temas básicos y más utilizados para llegar a las Matrices en Álgebra Lineal y poder avanzar a temas más retadores en álgebra.

Si buscas material acerca de cálculo límites, derivadas e integrales comienza dando Click aquí.

1. Vectores, Matrices en Álgebra Lineal y Sistemas de Ecuaciones

En el estudio de Las Matrices en Álgebra Lineal aparecen los vectores y las matrices, los primeros como un arreglo de números de una sola dimensión y los segundos como un arreglo de números de más de una dimensión.

1.1 Vectores

Vectores como los siguientes son denominados vectores fila y vectores columna respectivamente.

$\begin{bmatrix} \alpha & \beta & \gamma \end{bmatrix}$

$\begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}$

Es importante anotar que un vector es un conjunto ordenado de elementos y cada una de sus posiciones también se denomina elemento o componente. Este arreglo de elementos puede tener un tamaño determinado y sirve para agrupar un conjunto de valores que están interrelacionados, existen muchas propiedades relevantes de los vectores y las operaciones comunes de aritmética también están disponibles con ellos.

Las componentes de los vectores pueden ser reales $\mathbb R$ o complejos $\mathbb C$ de tal manera un vector de $n$ componentes reales representa el espacio $\mathbb R^n$, así $\mathbb R^2$ se llaman vectores en el plano y $\mathbb R^3$ se llaman vectores en el espacio.

1.1.1. Producto vectorial

Este producto está definido por la combinación lineal de dos vectores, de manera que el resultado de esta operación es un valor escalar, dado por la sumatoria de la multiplicación de las correspondientes componentes, de manera que una multiplicación vectorial (o producto punto) de dos vectores es compatible solo si ambos componentes tienen igual tamaño. La combinación lineal está dada por la siguiente sumatoria

$\mathbf a\cdot\mathbf b=\sum_{i=1}^na_ib_i$

1.1.2. Propiedades de los vectores

$\mathbf a\cdot\mathbf 0=0$

$\mathbf a\cdot\mathbf b=\mathbf b\cdot\mathbf a$

$\mathbf a\cdot(\mathbf b+\mathbf c)=\mathbf a\cdot\mathbf b+\mathbf a\cdot\mathbf c$

$(\alpha\mathbf a)\cdot\mathbf b=\alpha(\mathbf a\cdot\mathbf b)$

2. Matrices en Álgebra Lineal

Las Matrices en Álgebra Lineal aparecen, por ejemplo en el estudio de ecuaciones simultáneas, puede considerar para el ejemplo un sistema de ecuaciones de dos incógnitas con dos ecuaciones, que puede presentar los siguientes casos y a través de las siguientes ecuaciones:

$a_{11}x_1+a_{12}x_2=b_1$

$a_{21}x_1+a_{22}x_2=b_2$

Donde su correspondiente matriz de coeficientes es:

$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$

1. Una única solución, las rectas se intersecan en un solo punto, como muestra la siguiente gráfica

Sistemas de ecuaciones única solución
Figura 1. Única solución

2. Las rectas nunca se intersecan, por lo tanto, no se tiene solución

Sistemas de ecuaciones sin solución
Figura 2. Sin solución

3. Las rectas coinciden en todos los puntos y, por lo tanto, se tienen infinitas soluciones

Sistemas de ecuaciones infinitas soluciones
Figura 3. Infinitas soluciones

Estos sistemas de ecuaciones se pueden representar a través de matrices como sigue:

$\mathbf A \cdot x=b$

Donde $\mathbf A$ es la matriz de coeficientes de las ecuaciones, $x$ es un vector columna con las variables y $b$ es el vector columna con los valores de los coeficientes independientes. Cuando el sistema genérico de $n$ ecuaciones con mm incógnitas no presenta ninguna solución se dice que es un sistema inconsistente, por otro lado, si tiene al menos una solución se dice que es un sistema consistente.

2.1. Producto matricial

Este producto es compatible entre dos Matrices en Álgebra Lineal siempre y cuando el número de columnas de la primera matriz sea el mismo número de filas de la segunda matriz. Esta multiplicación no es conmutativa y el resultado de multiplicar dos matrices $\mathbf A$ y $\mathbf B$ esta dado por:

$c_{ij}=(\text{reglón }i \text{ de } \mathbf A)\cdot(\text{columna }j \text{ de } \mathbf B)$

2.2. Propiedades de las matrices

$\mathbf A+\mathbf 0=\mathbf A$

$\mathbf 0\mathbf A=\mathbf 0$

$\mathbf A+\mathbf B=\mathbf B+\mathbf A$

$(\mathbf A+\mathbf B)+\mathbf C=\mathbf A+(\mathbf B+\mathbf C)$

$\alpha(\mathbf A+\mathbf B)=\alpha\mathbf A+\alpha\mathbf B$

$\mathbf I\mathbf A=\mathbf A$

$ (\alpha + \beta)\mathbf A=\alpha\mathbf A+\beta\mathbf A$

$ \mathbf A(\mathbf B\mathbf C)=(\mathbf A\mathbf B)\mathbf C$

$\mathbf A(\mathbf B+\mathbf C)=\mathbf A\mathbf B+\mathbf A\mathbf C$

$(\mathbf A+\mathbf B)\mathbf C=\mathbf A\mathbf C+\mathbf B\mathbf C$

3. Artículos de Interés